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Over the last two decades, the field of geometric curve evolutions has attracted significant 
attention from scientific computing. One of the most popular numerical methods for solving 
geometric flows is the so-called BGN scheme, which was proposed by Barrett et al. (2007) [8], 
due to its favorable properties (e.g., its computational efficiency and the good mesh property). 
However, the BGN scheme is limited to first-order accuracy in time, and how to develop a higher-

order numerical scheme is challenging. In this paper, we propose a fully discrete, temporal 
second-order parametric finite element method, which integrates with two different mesh 
regularization techniques, for solving geometric flows of curves. The scheme is constructed based 
on the BGN formulation and a semi-implicit Crank-Nicolson leap-frog time stepping discretization 
as well as a linear finite element approximation in space. More importantly, we point out that 
the shape metrics, such as manifold distance and Hausdorff distance, instead of function norms, 
should be employed to measure numerical errors. Extensive numerical experiments demonstrate 
that the proposed BGN-based scheme is second-order accurate in time in terms of shape metrics. 
Moreover, by employing the classical BGN scheme as mesh regularization techniques, our 
proposed second-order schemes exhibit good properties with respect to the mesh distribution. 
In addition, an unconditional interlaced energy stability property is obtained for one of the mesh 
regularization techniques.

1. Introduction

Geometric flows, which describe the evolution of curves or surfaces over time based on the principle that the shape changes 
according to its underlying geometric properties, such as the curvature, have been extensively studied in the fields of computational 
geometry and geometric analysis. In particular, second-order (e.g., mean curvature flow, which is also called as curve-shortening 
flow for curve evolution) and fourth-order (e.g., surface diffusion flow) geometric flows have attracted considerable interest due to 
their wide-ranging applications in materials science [6,30], image processing [1], multiphase fluids [20] and cell biology [11]. For 
more in-depth information, readers can refer to the recent review articles [13,16], and references provided therein.

In this paper, we focus on three different types of geometric flows of curves: curve-shortening flow (CSF), area-preserving curve-

shortening flow (AP-CSF) and surface diffusion flow (SDF). First, assume that Γ(𝑡) is a family of simple closed curves in the two-

dimensional plane. We consider that the curve is governed by the three geometric flows, i.e., its velocity is respectively given by
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 =
⎧⎪⎨⎪⎩
−𝜅𝐧, CSF,

(−𝜅 + ⟨𝜅⟩)𝐧, AP-CSF,

(𝜕𝑠𝑠𝜅)𝐧, SDF,

(1.1)

where 𝜅 is the curvature of the curve, 𝑠 is the arc-length, ⟨𝜅⟩ ∶= ∫Γ(𝑡) 𝜅d𝑠∕ ∫Γ(𝑡) 1d𝑠 is the average curvature and 𝐧 is the outward unit 
normal to Γ. Here, we use the sign convention that a unit circle has a positive constant curvature.

By representing the curves Γ(𝑡) as a parametrization 𝐗(⋅, 𝑡) ∶ 𝕀 → ℝ2, where 𝕀 ∶= ℝ∕ℤ is the “periodic” interval [0, 1], Barrett, 
Garcke and Nürnberg [8,13] creatively reformulated the above equations (1.1) into the following coupled forms:

𝜕𝑡𝐗 ⋅ 𝐧 =
⎧⎪⎨⎪⎩
−𝜅, CSF,

−𝜅 + ⟨𝜅⟩ , AP-CSF,

𝜕𝑠𝑠𝜅, SDF,

𝜅𝐧 = −𝜕𝑠𝑠𝐗.

(1.2)

Based on the above equations and the corresponding weak formulations, a series of numerical schemes (the so-called BGN schemes) 
were proposed for solving different geometric flows, such as mean curvature flow and surface diffusion [8,9], Willmore flow [11], 
anisotropic geometric flow [5], solid-state dewetting [6,30] and geometric flow for surface evolution [10]. Recently, based on the 
BGN formulation (1.2), structure-preserving schemes have been proposed for axisymmetric geometric equations [4] and surface 
diffusion [5,7], respectively. In practical simulations, ample numerical results have demonstrated the high performance of the BGN 
scheme, due to inheriting the variational structure of the original problem and introducing an appropriate tangential velocity to help 
mesh points maintain a good distribution. However, for the original BGN scheme, because its formal truncation error is (𝜏), where 𝜏
is the time step size, the temporal convergence order of the scheme is limited to the first-order. This has been confirmed by extensive 
numerical experiments [6–9]. Therefore, how to design a temporal high-order scheme which is based on the BGN formulation (1.2)

is challenging and still open. It is also worth noting that rigorous numerical analysis for BGN schemes remains an open problem [13].

In this paper, based on the BGN formulation (1.2), we propose a novel temporal second-order parametric finite element method 
for solving geometric flows of curves, i.e., CSF, AP-CSF and SDF. Specifically, to discretize the same continuous-in-time semi-discrete 
formulation as the classical BGN scheme [8], we begin by fixing the unit normal as that on the current curve Γ𝑚 and then discretize 
other terms using the Crank-Nicolson leap-frog scheme [21]. The resulting scheme is a second-order semi-implicit scheme, which 
only requires solving a system of linear algebraic equations at each time step. Furthermore, the well-posedness of the fully discrete 
scheme can be established under suitable assumption conditions. Numerical results have demonstrated that the proposed scheme 
achieves second-order accuracy in time, as measured by the shape metrics, outperforming the classical BGN scheme in terms of 
accuracy and efficiency.

It is worth mentioning that there exist several temporal higher-order numerical schemes based on other formulations which 
have been proposed for simulating geometric flows. For the specific case of curve-shortening flow, a Crank-Nicolson-type scheme 
combined with tangential redistribution [3] and an adaptive moving mesh method [27] have been developed. Both of the schemes are 
convergent quadratically in time and fully implicit, requiring to solve a system of nonlinear equations at each time step. Recently, 
an evolving surface finite element method together with linearly implicit backward difference formulae for time integration for 
simulating the mean curvature flow has been proposed in [25,26]. In comparison to these existing approaches, our newly proposed 
scheme is based on the BGN formulation (1.2), then it inherits the variational structure of the original geometric flows, and has 
very good property with respect to mesh distribution. The new scheme exhibits comparable computational cost to the classical BGN 
scheme while surpassing it in terms of accuracy. Furthermore, it can be extended easily to other geometric flows with applications 
to various fields.

The main reason why we have successfully proposed a temporal high-order, BGN-based parametric finite element method for 
solving geometric flows lies in the following two key points: (1). we choose an appropriate metric (i.e., shape metrics) to measure 
numerical errors of the proposed schemes; (2). we use the classical first-order BGN scheme as “a good partner” of the proposed 
scheme to help mesh points maintain a good distribution without sacrificing the accuracy.

How to measure the errors of numerical solutions for geometric flows is an important issue. A natural approach is to use classi-

cal Sobolev norms, such as 𝐿2-norm, 𝐿∞-norm or 𝐻1-norm, which are widely used in the numerical analysis for geometric flows 
[17,18,25,26]. However, when it comes to numerical schemes that involve in tangential movements, these function norms may not be 
suitable for quantifying the differences between two curves/surfaces. To address this issue, we consider an alternative approach using 
shape metrics, such as manifold distance (as used in [7,31]) and Hausdorff distance [2]. These metrics provide a measure of how simi-

lar or different two curves/surfaces are in terms of their shape characteristics. Extensive numerical experiments have been conducted, 
and the results demonstrate that our proposed scheme achieves second-order accuracy when measured using shape metrics.

On the other hand, the quality of mesh distribution is always a major concern when simulating geometric flows using parametric 
finite element methods. It is important to note that the original flow (1.1) requires the curve to evolve only in the normal direction, 
thus the numerical methods based on (1.1) which prevent tangential movement of mesh points might lead to mesh distortion or 
clustering during the evolution. To address this issue, various approaches have been proposed in the literature to maintain good mesh 
quality, e.g., artificial mesh regularization method [14], reparametrization by introducing a tangential velocity [15,19,24,28,29]. On 
the contrary, the BGN formulation (1.2) does not enforce any condition on the tangential velocity, which allows for an intrinsic 
tangential motion of mesh points, as demonstrated by the standard BGN scheme [8,9] constructed based on this formulation (1.2). 
2

Though the semi-discrete scheme of (1.2), where only spatial discretization is performed, results in precise equidistribution of 
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mesh points, our proposed fully discrete second-order BGN-based scheme exhibits oscillations in terms of mesh ratio and other 
geometric quantities, which may lead to instability in certain situations. To address this issue, we implement two classical first-

order BGN schemes as mesh regularization procedures to enhance the quality of the mesh. More specifically, (1). we utilize the 
classical semi-implicit BGN scheme when poorly distributed polygonal approximations are detected. Extensive numerical experiments 
have shown that this approach improves the stability of the new scheme and significantly enhances the mesh quality. Importantly, 
numerous numerical experiments have also demonstrated that this mesh regularization only occurs infrequently throughout the 
evolution process, ensuring that the temporal second-order accuracy of the proposed scheme remains uncompromised; (2). after 
solving the BGN2 scheme at each time step, we employ the fully-implicit BGN scheme for the trivial flow in order to achieve mesh 
equidistribution. Although this mesh regularization may increase the computational cost, the unaffected temporal second-order 
accuracy ensures that our newly proposed scheme remains more efficient than classical BGN schemes. More importantly, this mesh 
regularization allows for the establishment of unconditional energy stability.

The remaining of the paper is organized as follows. In Section 2, taking CSF as an example, we begin by recalling the standard 
BGN scheme, and then propose a second-order in time, BGN-based parametric finite element method for solving CSF. Two mesh 
regularization procedures are proposed to ensure the good mesh quality during the evolution. Section 3 is devoted to explaining the 
importance of using shape metrics, such as manifold distance and Hausdorff distance, to accurately measure the errors of two curves. 
We extend the proposed second-order scheme to other geometric flows such as AP-CSF and the fourth-order flow SDF in Section 4. 
Extensive numerical results are provided to demonstrate the accuracy and efficiency of the proposed schemes in Section 5. Finally, 
we draw some conclusions in Section 6.

2. For curve shortening flow (CSF)

In this section, we propose a parametric finite element method with second-order temporal accuracy for numerically solving the 
CSF. The same idea can be easily extended to other geometric flows (cf. Section 4). To provide a comprehensive understanding, we 
first review a classical first-order BGN scheme proposed by Barrett, Garcke and Nürnberg [8,9,13].

2.1. Derivation of the classical BGN scheme

To begin with, we rewrite the CSF into the following formulation as presented in Eqs. (1.2):

𝜕𝑡𝐗 ⋅ 𝐧 = −𝜅,

𝜅𝐧 = −𝜕𝑠𝑠𝐗.
(2.1)

We introduce the following finite element approximation. Let 𝕀 = [0, 1] =
⋃𝑁

𝑗=1 𝐼𝑗 , 𝑁 ≥ 3, be a decomposition of 𝕀 into intervals given 
by the nodes red 𝜌𝑗 , 𝐼𝑗 = [𝜌𝑗−1, 𝜌𝑗 ]. Let ℎ = max

1≤𝑗≤𝑁
|𝜌𝑗 −𝜌𝑗−1| be the maximal length of a grid element. Define the linear finite element 

space as

𝑉 ℎ ∶= {𝑢 ∈ 𝐶(𝕀) ∶ 𝑢|𝐼𝑗 is linear, ∀𝑗 = 1,2,… ,𝑁 ; 𝑢(𝜌0) = 𝑢(𝜌𝑁 )} ⊆𝐻1(𝕀).

The mass lumped inner product (⋅, ⋅)ℎ
Γℎ

over the polygonal curve Γℎ, which is an approximation of (⋅, ⋅)Γℎ by using the composite 
trapezoidal rule, is defined as

(𝑢, 𝑣)ℎΓℎ ∶=
1
2

𝑁∑
𝑗=1

|𝐗ℎ(𝜌𝑗 , 𝑡) −𝐗ℎ(𝜌𝑗−1, 𝑡)| [(𝑢 ⋅ 𝑣)(𝜌−𝑗 ) + (𝑢 ⋅ 𝑣)(𝜌+
𝑗−1)

]
,

where 𝑢, 𝑣 are two scalar/vector piecewise continuous functions with possible jumps at the nodes {𝜌𝑗}𝑁𝑗=1, and 𝑢(𝜌±
𝑗
) = lim

𝜌→𝜌±
𝑗

𝑢(𝜌).

Subsequently, the semi-discrete scheme of the formulation (2.1) is as follows: given initial polygon Γℎ(0) with vertices lying on 
the initial curve Γ(0) clockwise, parametrized by 𝐗ℎ(⋅, 0) ∈ [𝑉 ℎ]2, find (𝐗ℎ(⋅, 𝑡), 𝜅ℎ(⋅, 𝑡)) ∈ [𝑉 ℎ]2 × 𝑉 ℎ such that{(

𝜕𝑡𝐗ℎ ⋅ 𝐧ℎ,𝜑ℎ
)ℎ
Γℎ +

(
𝜅ℎ,𝜑ℎ

)ℎ
Γℎ = 0, ∀ 𝜑ℎ ∈ 𝑉 ℎ,(

𝜅ℎ,𝐧ℎ ⋅𝝎ℎ
)ℎ
Γℎ −

(
𝜕𝑠𝐗ℎ, 𝜕𝑠𝝎

ℎ
)
Γℎ = 0, ∀ 𝝎ℎ ∈ [𝑉 ℎ]2,

(2.2)

where we always integrate over the current curve Γℎ described by 𝐗ℎ, the outward unit normal 𝐧ℎ is a piecewise constant vector 
given by

𝐧ℎ|𝐼𝑗 = −
𝐡⟂
𝑗|𝐡𝑗 | , 𝐡𝑗 =𝐗ℎ(𝜌𝑗 , 𝑡) −𝐗ℎ(𝜌𝑗−1, 𝑡), 𝑗 = 1,… ,𝑁,

with ⋅⟂ denoting clockwise rotation by 𝜋2 , and the partial derivative 𝜕𝑠 is defined piecewisely over each side of the polygon 𝜕𝑠𝑓 |𝐼𝑗 =
𝜕𝜌𝑓|𝜕𝜌𝐗ℎ| |𝐼𝑗 = (𝜌𝑗−𝜌𝑗−1)𝜕𝜌𝑓 |𝐼𝑗|𝐡𝑗 | . It was shown that the scheme (2.2) will always equidistribute the vertices along Γℎ for 𝑡 > 0 if they are not 
3

locally parallel (see Remark 2.4 in [8]).
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For a full discretization, we fix 𝜏 > 0 as a uniform time step size for simplicity, and let 𝐗𝑚 ∈ [𝑉 ℎ]2 and Γ𝑚 be the approximations 
of 𝐗(⋅, 𝑡𝑚) and Γ(𝑡𝑚), respectively, for 𝑚 = 0, 1, 2, …, where 𝑡𝑚 ∶= 𝑚𝜏 . We define 𝐡𝑚

𝑗
∶= 𝐗𝑚(𝜌𝑗 ) −𝐗𝑚(𝜌𝑗−1) and assume |𝐡𝑚

𝑗
| > 0 for 

𝑗 = 1, … , 𝑁 , ∀ 𝑚 > 0. The discrete unit normal vector 𝐧𝑚, the discrete inner product (⋅, ⋅)ℎΓ𝑚 and the discrete operator 𝜕𝑠 are defined 
similarly as in the semi-discrete case. Barrett, Garcke and Nürnberg used a formal first-order approximation [8,9] to replace the 
velocity 𝜕𝑡𝐗, 𝜅 and 𝜕𝑠𝐗 by

𝜕𝑡𝐗(⋅, 𝑡𝑚) =
𝐗(⋅, 𝑡𝑚+1) −𝐗(⋅, 𝑡𝑚)

𝜏
+(𝜏),

𝜅(⋅, 𝑡𝑚) = 𝜅(⋅, 𝑡𝑚+1) +(𝜏),

𝜕𝑠𝐗(⋅, 𝑡𝑚) = 𝜕𝑠𝐗(⋅, 𝑡𝑚+1) +(𝜏),

and the fully discrete semi-implicit BGN scheme (denoted as BGN1 scheme) reads as:

(BGN1, First-order in time BGN scheme for CSF): For 𝑚 ≥ 0, find 𝐗𝑚+1 ∈ [𝑉 ℎ]2 and 𝜅𝑚+1 ∈ 𝑉 ℎ such that

⎧⎪⎨⎪⎩
(
𝐗𝑚+1−𝐗𝑚

𝜏
,𝜑ℎ𝐧𝑚

)ℎ
Γ𝑚

+
(
𝜅𝑚+1, 𝜑ℎ

)ℎ
Γ𝑚 = 0, ∀ 𝜑ℎ ∈ 𝑉 ℎ,(

𝜅𝑚+1,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚 −

(
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝝎

ℎ
)
Γ𝑚 = 0, ∀ 𝝎ℎ ∈ [𝑉 ℎ]2.

(2.3)

The well-posedness and energy stability were established under some mild conditions. In practice, numerous numerical results show 
that the BGN1 scheme (2.3) converges quadratically in space [9] and linearly in time (cf. Fig. 1 in Section 5.1).

2.2. A second-order in time, BGN-based scheme

Instead of using the first-order Euler method, we apply the Crank-Nicolson leap-frog time stepping discretization in (2.2) based 
on the following simple calculation

𝜕𝑡𝐗(⋅, 𝑡𝑚) =
𝐗(⋅, 𝑡𝑚+1) −𝐗(⋅, 𝑡𝑚−1)

2𝜏
+(𝜏2),

𝜅(⋅, 𝑡𝑚) =
𝜅(⋅, 𝑡𝑚+1) + 𝜅(⋅, 𝑡𝑚−1)

2
+(𝜏2),

𝜕𝑠𝐗(⋅, 𝑡𝑚) =
𝜕𝑠𝐗(⋅, 𝑡𝑚+1) + 𝜕𝑠𝐗(⋅, 𝑡𝑚−1)

2
+(𝜏2),

(2.4)

then the corresponding second-order scheme (denoted as BGN2 scheme) is as follows:

(BGN2, Second-order in time BGN-based scheme for CSF): For 𝐗0 ∈ [𝑉 ℎ]2, 𝜅0 ∈ 𝑉 ℎ and (𝐗1, 𝜅1) ∈ [𝑉 ℎ]2 × 𝑉 ℎ which are the 
appropriate approximations at the time levels 𝑡0 = 0 and 𝑡1 = 𝜏 , respectively, find 𝐗𝑚+1 ∈ [𝑉 ℎ]2 and 𝜅𝑚+1 ∈ 𝑉 ℎ for 𝑚 ≥ 1 such that

⎧⎪⎨⎪⎩
(
𝐗𝑚+1−𝐗𝑚−1

2𝜏 ,𝜑ℎ𝐧𝑚
)ℎ
Γ𝑚

+
(
𝜅𝑚+1+𝜅𝑚−1

2 , 𝜑ℎ
)ℎ
Γ𝑚

= 0,(
𝜅𝑚+1+𝜅𝑚−1

2 ,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚

−
(
𝜕𝑠𝐗𝑚+1+𝜕𝑠𝐗𝑚−1

2 , 𝜕𝑠𝝎
ℎ
)
Γ𝑚

= 0,
(2.5)

for all (𝜑ℎ, 𝝎ℎ) ∈ 𝑉 ℎ ×[𝑉 ℎ]2. The scheme (2.5) is semi-implicit and the computational cost is comparable to that of the BGN1 scheme 
(2.3). Moreover, as a temporal discretization of the semi-discrete version (2.2), it can be easily derived from (2.4) that the truncation 
error is of order (𝜏2).

Remark 2.1. To begin the BGN2 scheme (2.5), we need to first prepare the data 𝜅0 and (𝐗1, 𝜅1). In practical simulations, this can 
be easily achieved without sacrificing the accuracy of the scheme by utilizing the standard BGN1 scheme (2.3) to get (𝐗1, 𝜅1), and 
the following formula of discrete curvature was proposed in [8, p. 461] to prepare 𝜅0 (note the sign convention of the curvature is 
opposite to [8])

𝜅0 = (𝑁⊤
0 𝑁0)−1𝑁⊤

0 𝐴0𝐗0, (2.6)

where 𝑁0 is a 2𝑁 ×𝑁 matrix, 𝐗0 is a 2𝑁 × 1 vector and 𝐴0 is a 2𝑁 × 2𝑁 matrix given by

𝑁0 =

(
(𝜑𝑖, (𝐧0)[1]𝜑𝑗 )ℎΓ0
(𝜑𝑖, (𝐧0)[2]𝜑𝑗 )ℎΓ0

)
, 𝐗0 =

(
𝐱0
𝐲0

)
,

𝐴0 =
(
(𝜕𝑠𝜑𝑖, 𝜕𝑠𝜑𝑗 )Γ0 0

0 (𝜕𝑠𝜑𝑖, 𝜕𝑠𝜑𝑗 )Γ0

)
,

where 𝜑𝑖, 1 ≤ 𝑖 ≤𝑁 are the standard Lagrange basis over 𝕀, and 𝐚[1], 𝐚[2] are the first and second component of vector 𝐚 ∈ ℝ2, and 
𝐱0
𝑗
= (𝐗0)[1](𝜌𝑗 ), 𝐲0𝑗 = (𝐗0)[2](𝜌𝑗 ) for 𝑗 = 1, … , 𝑁 . Note that this formula can be derived by solving the finite element approximation 
4

of the equation 𝜅𝐧 = −𝜕𝑠𝑠𝐗 and using the least square method. We can summarize the process as Algorithm 2.1, which outlines the 
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steps to prepare the required data 𝜅0 and (𝐗1, 𝜅1). Once we have obtained these data, we can directly apply the BGN2 scheme (2.5)

to calculate (𝐗𝑚, 𝜅𝑚), for 𝑚 ≥ 2.

Algorithm 2.1. (Preparation for the initial data of BGN2 for CSF)

𝑺𝒕𝒆𝒑 𝟎. Given the initial curve Γ(0), the number of grid points 𝑁 and the time step size 𝜏 . We choose the polygon Γ0 with 
𝑁 vertices lying on Γ(0) such that Γ0 is (almost) equidistributed, i.e., each side of the polygon is (nearly) equal in length. We 
parameterize Γ0 with 𝐗0 ∈ [𝑉 ℎ]2 and the grid points 𝜌𝑗 can be determined correspondingly.

𝑺𝒕𝒆𝒑 𝟏. Using 𝐗0 as the input, we compute 𝜅0 using the discrete curvature formula (2.6).

𝑺𝒕𝒆𝒑 𝟐. Using 𝐗0 as the input, we obtain (𝐗1, 𝜅1) by solving the BGN1 scheme (2.3) for one time step.

Remark 2.2. When dealing with an initial curve which is not regular, an alternative approach for initialization is to solve the BGN1 
scheme twice and start the BGN2 scheme from 𝑚 = 2. Specifically, for given 𝐗0, we can compute (𝐗1, 𝜅1) and (𝐗2, 𝜅2), which are the 
appropriate approximations at time levels 𝑡1 = 𝜏 and 𝑡2 = 2𝜏 , by solving the BGN1 scheme (2.3) twice. These approximations can be 
used as initial values to implement the BGN2 scheme (2.3) for 𝑚 ≥ 2. For the superiority of this approach, see Fig. 6 in Section 5.3.

Similar to the BGN1 scheme (2.3), we can show the well-posedness of the BGN2 scheme (2.5) under some mild conditions as 
follows.

Theorem 2.1 (Well-posedness). For 𝑚 ≥ 0, we assume that the following two conditions are satisfied:

(1) There exist at least two vectors in {𝐡𝑚
𝑗
}𝑁
𝑗=1 which are not parallel, i.e.,

dim
(
Span

{
𝐡𝑚𝑗

}𝑁

𝑗=1

)
= 2.

(2) No degenerate elements exist on Γ𝑚, i.e.,

min
1≤𝑗≤𝑁

|𝐡𝑚𝑗 | > 0.

Then the full discretization (2.5) is well-posed, i.e., there exists a unique solution (𝐗𝑚+1, 𝜅𝑚+1) ∈ [𝑉 ℎ]2 × 𝑉 ℎ of (2.5).

Proof. It suffices to prove the following algebraic system for (𝐗, 𝜅) ∈ [𝑉 ℎ]2 × 𝑉 ℎ has only zero solution,

⎧⎪⎨⎪⎩
(
𝐗
𝜏
,𝜑ℎ𝐧𝑚

)ℎ
Γ𝑚

+
(
𝜅,𝜑ℎ

)ℎ
Γ𝑚 = 0, ∀ 𝜑ℎ ∈ 𝑉 ℎ,(

𝜅,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚 −

(
𝜕𝑠𝐗, 𝜕𝑠𝝎ℎ

)
Γ𝑚 = 0, ∀ 𝝎ℎ ∈ [𝑉 ℎ]2.

Indeed, the stiffness matrix is exactly the same as the standard BGN1 scheme (2.3) and thus the same argument in [9, Theorem 2.9]

yields the conclusion under the assumptions (1) and (2). □

2.3. Mesh regularization by semi-implicit BGN1 scheme

As was mentioned earlier, the semi-discrete scheme (2.2) possesses the mesh equidistribution property [13, Theorem 79]. In 
practice, the fully-discrete BGN1 scheme (2.3) can maintain the asymptotic long-time mesh equidistribution property. However, the 
BGN2 scheme (2.5) may have oscillating mesh ratio due to the structure of two-step method, which can potentially amplify the mesh 
ratio and cause mesh distortion or clustering during the evolution, especially for some initial curves which are not so regular, e.g., a 
‘flower’ curve (see the second row of Fig. 7). Therefore, a mesh regularization procedure is necessary in real simulations to help the 
mesh maintain a good distribution property during the evolution, when the mesh ratio exceeds a given threshold value. Inspired by 
the good mesh distribution property of the BGN1 scheme, we utilize the BGN1 scheme as the mesh regularization technique. In the 
following, we denote 𝑛MR as the threshold value chosen initially. If the mesh ratio Ψ𝑚 > 𝑛MR, then we use the mesh regularization 
procedure to improve the mesh distribution. We present a summary of the complete algorithm of BGN2 scheme for solving the CSF 
in Algorithm 2.2.

Algorithm 2.2. (BGN2 scheme for CSF)

𝑺𝒕𝒆𝒑 𝟎. Given the initial curve Γ(0), and 𝑁, 𝑇 , 𝑛MR, 𝜏 , compute 𝐗0 as in Step 0 in Algorithm 2.1.

𝑺𝒕𝒆𝒑 𝟏. Using 𝐗0 as the input, we compute 𝜅0 using the discrete curvature formula (2.6) and solve (𝐗1, 𝜅1) via the BGN1 scheme 
(2.3). Set 𝑚 = 1.

𝑺𝒕𝒆𝒑 𝟐. Calculate the mesh ratio Ψ𝑚 of 𝐗𝑚, 𝑚 ≥ 1.

𝑺𝒕𝒆𝒑 𝟑. If the mesh ratio Ψ𝑚 > 𝑛MR, then replace (𝐗𝑚, 𝜅𝑚) with the solution of the BGN1 scheme (2.3) with 𝐗𝑚−1 as the input by 
5

one run; otherwise, skip this step.



Journal of Computational Physics 514 (2024) 113220W. Jiang, C. Su and G. Zhang

𝑺𝒕𝒆𝒑 𝟒. Use the BGN2 scheme (2.5) to obtain (𝐗𝑚+1, 𝜅𝑚+1).
𝑺𝒕𝒆𝒑 𝟓. Update 𝑚 =𝑚 + 1. If 𝑚 < 𝑇 ∕𝜏 , then go back to Step 2; otherwise, stop the algorithm and output the data.

As shown in Step 3 of Algorithm 2.2, if the mesh ratio Ψ𝑚 > 𝑛MR, we replace (𝐗𝑚, 𝜅𝑚) with the solution of the BGN1 scheme (2.3)

with 𝐗𝑚−1 as the input by one run, to help us realize the mesh regularization. Extensive numerical experiments suggest that the 
mesh regularization procedure is very effective, and the mesh ratio decreases immediately to a small value after this procedure (cf. 
Fig. 4(d) in Section 5). The BGN2 scheme with the aid of the BGN1 scheme as the mesh regularization is very efficient and stable in 
practical simulations. The reason comes from that the BGN1 scheme (2.3) can intrinsically lead to a good mesh distribution property, 
which was explained in [8,13], but a more convincing explanation needs further rigorous numerical analysis for the scheme.

One concern that may arise is whether the BGN2 scheme with necessary mesh regularization can still achieve second-order 
accuracy, considering that the BGN1 scheme is only first-order accurate. It is important to note that for certain smooth initial curves, 
such as elliptic curves, the mesh regularization procedure is never required during the evolution. In such cases, the numerical 
evolution remains remarkably stable and the mesh ratio remains bounded. While for certain special initial curves, like a ‘flower’ 
curve or a ‘tube’ curve, the mesh regularization procedure may be needed only a few times (cf. Section 5.3). Nevertheless, this does 
not compromise the temporal second-order accuracy of the BGN2 scheme (2.5).

2.4. Mesh regularization by implicit equi-BGN1 scheme for trivial flow

In the following, we recall a fully-implicit scheme for CSF [12] which intrinsically equidistributes the vertices along the curve at 
each time step.

(equi-BGN1, First-order in time equidistribution BGN scheme for CSF): For 𝑚 ≥ 0, find 𝐗𝑚+1 ∈ [𝑉 ℎ]2 and 𝜅𝑚+1 ∈ 𝑉 ℎ such 
that ⎧⎪⎨⎪⎩

(
𝐗𝑚+1−𝐗𝑚

𝜏
,𝜑ℎ𝐧𝑚+1

)ℎ
Γ𝑚+1

+
(
𝜅𝑚+1, 𝜑ℎ

)ℎ
Γ𝑚+1 = 0, ∀𝜑ℎ ∈ 𝑉 ℎ,(

𝜅𝑚+1,𝐧𝑚+1 ⋅𝝎ℎ
)ℎ
Γ𝑚+1 −

(
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝝎

ℎ
)
Γ𝑚+1 = 0, ∀𝝎ℎ ∈ [𝑉 ℎ]2.

(2.7)

It has been shown in [12] that

|𝐡𝑚+1
𝑗

| = |𝐡𝑚+1
𝑗−1 |, if 𝐡𝑚+1

𝑗
∦ 𝐡𝑚+1

𝑗−1 , 𝑗 = 1,… ,𝑁. (2.8)

Moreover, the stability estimate holds

𝐿𝑚+1 + 𝜏
(
𝜅𝑚+1, 𝜅𝑚+1

)ℎ
Γ𝑚+1 ≤𝐿𝑚, (2.9)

where 𝐿𝑚 represents the length of the polygon Γ𝑚.

Inspired by the equidistribution property of the fully implicit scheme (2.7), we propose to implement the mesh regularization 
using the equi-BGN1 scheme for the trivial flow

 = 0,

which can distribute mesh points equally and retain the shape of the curve in the continuous level. More specifically, with 𝐗𝑚 ∈ [𝑉 ℎ]2, 
find 𝐗̃𝑚 ∈ [𝑉 ℎ]2 and 𝜅𝑚 ∈ 𝑉 ℎ such that⎧⎪⎨⎪⎩

(
𝐗̃𝑚 −𝐗𝑚,𝜑ℎ𝐧𝑚

)ℎ
Γ̃𝑚

= 0, ∀𝜑ℎ ∈ 𝑉 ℎ,(
𝜅𝑚,𝐧𝑚 ⋅𝝎ℎ

)ℎ
Γ̃𝑚 −

(
𝜕𝑠𝐗̃𝑚, 𝜕𝑠𝝎

ℎ
)
Γ̃𝑚

= 0, ∀𝝎ℎ ∈ [𝑉 ℎ]2.
(2.10)

Similar to (2.7), it can be rigorously proved that the vertices of Γ̃𝑚 are evenly distributed and the perimeter does not increase, i.e.,

|̃𝐡𝑚𝑗 | = |̃𝐡𝑚
𝑗−1|, 𝑗 = 1,… ,𝑁 ; 𝐿̃𝑚 ≤𝐿𝑚. (2.11)

Now, we present a summary of the entire algorithm for the equi-BGN2 scheme for solving the CSF. This scheme can be regarded 
as a variant of scheme (2.5), where (𝐗𝑚−1, 𝜅𝑚−1) and Γ𝑚 are replaced by their mesh regularized approximations (𝐗̃𝑚−1, ̃𝜅𝑚−1) and 
Γ̃𝑚, respectively.

Algorithm 2.3. (equi-BGN2 scheme for CSF)

𝑺𝒕𝒆𝒑 𝟎. Given the initial curve Γ(0), and 𝑁, 𝑇 , 𝜏 , compute 𝐗0 as in Step 0 in Algorithm 2.1. Use equi-BGN1 scheme (2.10) to 
obtain the equidistributed polygon 𝐗̃0 and 𝜅0.

𝑺𝒕𝒆𝒑 𝟏. Using 𝐗̃0 as the input, we obtain (𝐗̃1, ̃𝜅1) by solving the equi-BGN1 scheme (2.7) with time step 𝜏 . Set 𝑚 = 1.

𝑺𝒕𝒆𝒑 𝟐. Solve the BGN2 scheme (2.5) with (𝐗̃𝑚−1, ̃𝜅𝑚−1) and Γ̃𝑚 to obtain (𝐗𝑚+1, 𝜅𝑚+1).
𝑺𝒕𝒆𝒑 𝟑. Update 𝑚 =𝑚 + 1. Apply the equi-BGN1 scheme (2.10) to obtain the mesh-regularized approximation 𝐗̃𝑚 and 𝜅𝑚.

𝑺𝒕𝒆𝒑 𝟒. If 𝑚 < 𝑇 ∕𝜏 , then go back to Step 2; otherwise, stop the algorithm and output the data 𝐗̃𝑚 as an approximation solution 
6

at time 𝑡𝑚.
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Indeed, the solution 𝐗̃𝑚 not only equidistributes the vertices at each time level, but also is unconditionally stable in the following 
sense.

Theorem 2.2 (Interlaced energy stability). Let Γ̃𝑚 = 𝐗̃𝑚(𝕀) be the solution of Algorithm 2.3. Then for any 𝜏 > 0 and 𝑚 ≥ 1, the energy 
stability holds

𝐿̃𝑚+1 ≤ 𝐿̃𝑚−1, (2.12)

where 𝐿̃𝑚 ∶=
𝑁∑
𝑗=1

|̃𝐡𝑚
𝑗
| is the perimeter of Γ̃𝑚. In particular, we have

𝐿̃𝑚 ≤𝐿0, ∀ 𝑚 ≥ 1, (2.13)

where 𝐿0 is the perimeter of the initial polygon Γ0.

Proof. Recalling 𝑺𝒕𝒆𝒑 𝟐, taking 𝝎ℎ = 𝐗𝑚+1−𝐗̃𝑚−1

2𝜏 and 𝜑ℎ = 𝜅𝑚+1+𝜅𝑚−1
2 in equation (2.5), we get

(
𝜅𝑚+1 + 𝜅𝑚−1

2
,
𝜅𝑚+1 + 𝜅𝑚−1

2

)ℎ
Γ̃𝑚

= −
(𝐗𝑚+1 − 𝐗̃𝑚−1

2𝜏
,

(
𝜅𝑚+1 + 𝜅𝑚−1

2

)
𝐧𝑚

)ℎ
Γ̃𝑚

= −
(𝜕𝑠𝐗𝑚+1 + 𝜕𝑠𝐗̃𝑚−1

2
,
𝜕𝑠𝐗𝑚+1 − 𝜕𝑠𝐗̃𝑚−1

2𝜏

)
Γ̃𝑚

= − 1
4𝜏

((
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝐗𝑚+1)

Γ̃𝑚 −
(
𝜕𝑠𝐗̃𝑚−1, 𝜕𝑠𝐗̃𝑚−1

)
Γ̃𝑚

)
. (2.14)

Noticing (2.11), we denote |̃𝐡𝑚| = 𝐿̃𝑚

𝑁
by the length of each edge of the polygon Γ̃𝑚, then, we have

(
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝐗𝑚+1)

Γ̃𝑚 =
𝑁∑
𝑗=1

|𝐡𝑚+1
𝑗

||̃𝐡𝑚| |𝐡𝑚+1
𝑗

||̃𝐡𝑚| |̃𝐡𝑚| = 𝑁∑
𝑗=1

|𝐡𝑚+1
𝑗

|2|̃𝐡𝑚| ,

(
𝜕𝑠𝐗̃𝑚−1, 𝜕𝑠𝐗̃𝑚−1

)
Γ̃𝑚

=
𝑁∑
𝑗=1

|̃𝐡𝑚−1||̃𝐡𝑚| |̃𝐡𝑚−1||̃𝐡𝑚| |̃𝐡𝑚| = 𝑁∑
𝑗=1

|̃𝐡𝑚−1|2|̃𝐡𝑚| .

Therefore, by combining with the Cauchy-Schwarz inequality, we can estimate(
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝐗𝑚+1

)
Γ̃𝑚

−
(
𝜕𝑠𝐗̃𝑚−1, 𝜕𝑠𝐗̃𝑚−1

)
Γ̃𝑚

=
𝑁∑
𝑗=1

|𝐡𝑚+1
𝑗

|2|̃𝐡𝑚| −
𝑁∑
𝑗=1

|̃𝐡𝑚−1|2|̃𝐡𝑚| = 𝑁

𝐿̃𝑚

𝑁∑
𝑗=1

|𝐡𝑚+1
𝑗

|2 − (𝐿̃𝑚−1)2

𝐿̃𝑚

≥
𝑁

𝐿̃𝑚

( 𝑁∑
𝑗=1

|𝐡𝑚+1
𝑗

|)2
∕𝑁 − (𝐿̃𝑚−1)2

𝐿̃𝑚
= (𝐿𝑚+1)2 − (𝐿̃𝑚−1)2

𝐿̃𝑚

≥
(𝐿̃𝑚+1)2 − (𝐿̃𝑚−1)2

𝐿̃𝑚
, (2.15)

where for the last inequality we used (2.11). Combining (2.14) and (2.15), we can deduce (2.12).

To show (2.13), it suffices to prove 𝐿̃0 ≤ 𝐿0 and 𝐿̃1 ≤ 𝐿0. This can be easily obtained by recalling 𝑺𝒕𝒆𝒑 𝟎, 𝑺𝒕𝒆𝒑 𝟏, (2.11) and 
(2.9). □

Remark 2.3. It is also feasible to perform the mesh regularization using the semi-implicit BGN1 scheme (2.3) for the trivial flow in 
𝑺𝒕𝒆𝒑 𝟑 of Algorithm 2.3 at each time step. While this approach can reduce the global computational costs, achieving a theoretical 
proof of energy stability, as demonstrated in Theorem 2.2, seems unattainable.

In subsequent sections, we will denote (2.3) and (2.7) by the BGN1 and equi-BGN1 scheme, respectively. We call Algorithm 2.2
7

and Algorithm 2.3 as the BGN2 and equi-BGN2 scheme, respectively.
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3. Shape metric is a better choice

As we are aware, it is an interesting and thought-provoking problem to determine how to quantify the difference between two 
curves in 2D or two surfaces in 3D. Given two closed curves Γ1 and Γ2, we assume that the two curves are parametrized by 𝐗(𝜌) and 
𝐘(𝜌), respectively, over the same interval 𝕀. Consequently, we can define the following four metrics for measurement:

• (𝐿2-error) The 𝐿2-norm between the parametrized functions 𝐗(𝜌) and 𝐘(𝜌) is defined in a classical way

𝐴(𝐗,𝐘) ∶= ‖𝐗(𝜌) −𝐘(𝜌)‖𝐿2(𝕀).

• (𝐿∞-error) The 𝐿∞-norm between the parametrized functions 𝐗(𝜌) and 𝐘(𝜌) is defined as

𝐵(𝐗,𝐘) ∶= ‖𝐗(𝜌) −𝐘(𝜌)‖𝐿∞(𝕀).

• (Manifold distance) The manifold distance between the curves Γ1 and Γ2 is defined as [31]

M
(
Γ1,Γ2

)
∶= |(Ω1 ⧵Ω2) ∪ (Ω2 ⧵Ω1)| = |Ω1|+ |Ω2|− 2|Ω1 ∩Ω2|,

where Ω1 and Ω2 represent the regions enclosed by Γ1 and Γ2, respectively, and |Ω| denotes the area of Ω.

• (Hausdorff distance) The Hausdorff distance between the curves Γ1 and Γ2 is defined as [2]

𝐻(Γ1,Γ2) = max{𝐻̃(Γ1,Γ2), 𝐻̃(Γ2,Γ1)},

where 𝐻̃(Γ1, Γ2) =max
𝑎∈Γ1

min
𝑏∈Γ2

𝑑(𝑎, 𝑏), and 𝑑 is the Euclidean distance.

Remark 3.1. The 𝐿2-error and 𝐿∞-error fall within the domain of function metrics, which rely on the parametrization of curves. 
On the other hand, as demonstrated in [31, Proposition 5.1] and [2], it has been easily proven that both manifold distance and 
Hausdorff distance fulfill the properties of symmetry, positivity and the triangle inequality. Therefore, they belong to the category of 
shape metrics and not influenced by the specific parametrization.

Remark 3.2. It should be noted that the aforementioned shape metrics can be easily calculated using simple algorithms. As the 
numerical solutions are represented as polygons, it is very easy to calculate the area of the symmetric difference region, i.e., the 
manifold distance, between two polygonal curves. Additionally, a polygon-based approach proposed in the literature [2] can be 
employed to calculate the Hausdorff distance between planar curves.

In order to test the convergence rate of numerical schemes, for example, we consider the evolution of the CSF with an initial 
ellipse defined by

{(𝑥, 𝑦) ∈ℝ2 ∶ 𝑥2 + 4𝑦2 = 4}.

This initial ellipse is approximated using an equidistributed polygon 𝐗0 with 𝑁 vertices. Here, we simulate the CSF by using three 
different numerical schemes: Dziuk’s scheme [17, Section 6], BGN1 scheme and BGN2 scheme. Since the exact solution of the CSF 
for an elliptical curve is unknown, we first compute a reference solution 𝐗ref by Dziuk’s scheme (to test the convergence of Dziuk’s 
scheme) or the BGN2 scheme (to test the convergence of BGN-type schemes) with a fine mesh and a tiny time step size, e.g., 
𝑁 = 10000 and 𝜏 = 10−1 ∗ 2−11. To test the temporal error, we still take a large number of grid points, e.g., 𝑁 = 10000, such that the 
spatial error is ignorable. The numerical error and the corresponding convergence order are then determined as follows

 ∶= 𝜏 (𝑇 ) =(𝐗𝑘
𝜏
,𝐗ref ), Order = log

( 𝜏 (𝑇 )
𝜏∕2(𝑇 )

)/
log2, (3.1)

where 𝑘 = 𝑇 ∕𝜏 , and  represents any one of the four metrics defined above.

Tables 1-3 display the numerical errors at time 𝑇 = 0.25 measured by the four different metrics for Dziuk’s scheme [17], the BGN1 
scheme and the BGN2 scheme, respectively. As anticipated, we easily observe linear convergence in time for Dziuk’s scheme across 
all four different metrics. While linear and quadratic convergence for both shape metrics (i.e., the manifold distance and Hausdorff 
distance) are observed for the BGN1 scheme in Table 2 and the BGN2 scheme in Table 3, respectively.

It is worth noting that unlike Dziuk’s scheme, the convergence of the BGN1 scheme and BGN2 scheme under function metrics 
(the 𝐿2-norm and 𝐿∞-norm) is not as satisfactory. This is not surprising since the error in classical Sobolev space depends on the 
specific parametrization of the curve. In contrast, the BGN formulation (2.1) allows tangential motion to make the mesh points 
equidistribute, which indeed affects the parametrization while preserving the shape of the curve. Thus it is not appropriate to use 
the classical function metrics to quantify the errors of the BGN-type schemes which are based on the BGN formulation. Instead, as 
observed from Tables 2 and 3, the shape metrics are much more suitable for quantifying the numerical errors of the schemes that 
allow intrinsic tangential velocity. In the remaining of the article, we will employ the manifold distance or the Hausdorff distance 
8

when measuring the difference between two curves.
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Table 1

Numerical errors quantified by various metrics for Dziuk’s scheme [17, 
Section 6], with the parameters 𝑁 = 10000, 𝜏0 = 1∕40, and 𝑇 = 0.25.

Errors 𝜏 = 𝜏0 𝜏0∕2 𝜏0∕22 𝜏0∕23

𝐿2-norm 1.17E-2 6.31E-3 3.26E-3 1.62E-3

Order – 0.89 0.95 1.01

𝐿∞-norm 3.05E-2 1.63E-2 8.41E-3 4.19E-3

Order – 0.90 0.96 1.00

Manifold distance 6.89E-2 3.65E-2 1.86E-2 9.17E-3

Order – 0.92 0.97 1.02

Hausdorff distance 3.04E-2 1.62E-2 8.29E-3 4.09E-3

Order – 0.91 0.97 1.02

Table 2

Numerical errors quantified by various metrics for the BGN1 scheme, 
with the parameters 𝑁 = 10000, 𝜏0 = 1∕40, 𝑇 = 0.25.

Errors 𝜏 = 𝜏0 𝜏0∕2 𝜏0∕22 𝜏0∕23

𝐿2-norm 4.25E-3 3.98E-3 4.05E-3 4.15E-3

Order – 0.10 −0.03 −0.03

𝐿∞-norm 1.00E-2 9.17E-3 9.47E-3 9.79E-3

Order – 0.12 −0.05 −0.05

Manifold distance 3.11E-2 1.58E-2 7.96E-3 4.00E-3

Order – 0.98 0.99 0.99

Hausdorff distance 8.23E-3 4.18E-3 2.11E-3 1.06E-3

Order – 0.98 0.99 0.99

Table 3

Numerical errors quantified by various metrics for the BGN2 scheme, 
with the parameters 𝑁 = 10000, 𝜏0 = 1∕40, 𝑇 = 0.25.

Errors 𝜏 = 𝜏0 𝜏0∕2 𝜏0∕22 𝜏0∕23

𝐿2-norm 1.49E-2 1.45E-2 1.45E-2 1.43E-2

Order – 0.04 0.00 0.02

𝐿∞-norm 3.32E-2 3.30E-2 3.29E-2 3.29E-2

Order – 0.01 0.00 0.00

Manifold distance 8.44E-4 2.11E-4 5.27E-5 1.32E-5

Order – 2.00 2.00 1.99

Hausdorff distance 2.00E-4 4.98E-5 1.26E-5 3.29E-6

Order – 2.01 1.98 1.94

4. Applications to other geometric flows

In this section, we extend the above proposed BGN2 scheme to other geometric flows.

4.1. For area-preserving curve-shortening flow (AP-CSF)

As is known, the AP-CSF can be viewed as the 𝐿2-gradient flow with respect to the length functional under the constraint of total 
area preservation [13,23]. Similar to (2.1), we rewrite the AP-CSF as the following coupled equations

𝜕𝑡𝐗 ⋅ 𝐧 = −𝜅 + ⟨𝜅⟩ ,
𝜅𝐧 = −𝜕𝑠𝑠𝐗,

(4.1)

where the average of curvature is defined as ⟨𝜅⟩ ∶= ∫Γ(𝑡) 𝜅d𝑠∕ ∫Γ(𝑡) 1d𝑠. The fully-discrete, first-order in time semi-implicit BGN 
9

scheme for AP-CSF reads as [13]:
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(BGN1 scheme for AP-CSF): For 𝑚 ≥ 0, find 𝐗𝑚+1 ∈ [𝑉 ℎ]2 and 𝜅𝑚+1 ∈ 𝑉 ℎ such that

⎧⎪⎨⎪⎩
(
𝐗𝑚+1−𝐗𝑚

𝜏
,𝜑ℎ𝐧𝑚

)ℎ
Γ𝑚

+
(
𝜅𝑚+1 −

⟨
𝜅𝑚+1

⟩
Γ𝑚 ,𝜑

ℎ
)ℎ
Γ𝑚 = 0,(

𝜅𝑚+1,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚 −

(
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝝎

ℎ
)
Γ𝑚 = 0,

(4.2)

for all (𝜑ℎ, 𝝎ℎ) ∈ 𝑉 ℎ × [𝑉 ℎ]2, where 
⟨
𝜅𝑚+1

⟩
Γ𝑚 ∶=

(
𝜅𝑚+1,1

)ℎ
Γ𝑚 ∕ (1,1)

ℎ
Γ𝑚 .

Based on the same spirit, we can propose the following second-order BGN2 scheme.

(BGN2 scheme for AP-CSF): For 𝑚 ≥ 1, find (𝐗𝑚+1, 𝜅𝑚+1) ∈ [𝑉 ℎ]2 × 𝑉 ℎ such that{(𝐗𝑚+1−𝐗𝑚−1

2𝜏 ,𝜑ℎ𝐧𝑚
)ℎ
Γ𝑚 = −

( 𝜅𝑚+1+𝜅𝑚−1
2 −

⟨ 𝜅𝑚+1+𝜅𝑚−1
2

⟩
Γ𝑚 ,𝜑

ℎ
)ℎ
Γ𝑚 ,( 𝜅𝑚+1+𝜅𝑚−1

2 ,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚 −

( 𝜕𝑠𝐗𝑚+1+𝜕𝑠𝐗𝑚−1

2 , 𝜕𝑠𝝎
ℎ
)
Γ𝑚 = 0,

(4.3)

for all (𝜑ℎ, 𝝎ℎ) ∈ 𝑉 ℎ × [𝑉 ℎ]2. Similarly, the stiffness matrix of the linear system to be solved in (4.3) is exactly the same as the BGN1 
scheme (4.2), whose well-posedness has been established in [13, Theorem 90]. The equi-BGN1 scheme [13] and equi-BGN2 scheme 
can be derived in a similar manner. Similarly, unconditional interlaced energy stability for the equi-BGN2 scheme can be obtained.

4.2. For surface diffusion flow (SDF)

We consider the fourth-order flow—SDF, which can be viewed as the 𝐻−1-gradient flow with respect to the length functional [7,

13]. In a similar fashion, we rephrase the SDF as the subsequent system of equations

𝜕𝑡𝐗 ⋅ 𝐧 = 𝜕𝑠𝑠𝜅,

𝜅𝐧 = −𝜕𝑠𝑠𝐗.
(4.4)

The fully discrete, first-order in time semi-implicit BGN scheme for SDF reads as [8]:

(BGN1 scheme for SDF): For 𝑚 ≥ 0, find 𝐗𝑚+1 ∈ [𝑉 ℎ]2 and 𝜅𝑚+1 ∈ 𝑉 ℎ such that

⎧⎪⎨⎪⎩
(
𝐗𝑚+1−𝐗𝑚

𝜏
,𝜑ℎ𝐧𝑚

)ℎ
Γ𝑚

+
(
𝜕𝑠𝜅

𝑚+1, 𝜕𝑠𝜑
ℎ
)
Γ𝑚 = 0, ∀ 𝜑ℎ ∈ 𝑉 ℎ,(

𝜅𝑚+1,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚 −

(
𝜕𝑠𝐗𝑚+1, 𝜕𝑠𝝎

ℎ
)
Γ𝑚 = 0, ∀ 𝝎ℎ ∈ [𝑉 ℎ]2.

(4.5)

In line with the same approach, we can put forward the subsequent second-order BGN2 scheme:

(BGN2 scheme for SDF): For 𝑚 ≥ 1, find (𝐗𝑚+1, 𝜅𝑚+1) ∈ [𝑉 ℎ]2 × 𝑉 ℎ such that

⎧⎪⎨⎪⎩
(
𝐗𝑚+1−𝐗𝑚−1

2𝜏 ,𝜑ℎ𝐧𝑚
)ℎ
Γ𝑚

+
(
𝜕𝑠𝜅

𝑚+1+𝜕𝑠𝜅𝑚−1

2 , 𝜕𝑠𝜑
ℎ
)
Γ𝑚

= 0,(
𝜅𝑚+1+𝜅𝑚−1

2 ,𝐧𝑚 ⋅𝝎ℎ
)ℎ
Γ𝑚

−
(
𝜕𝑠𝐗𝑚+1+𝜕𝑠𝐗𝑚−1

2 , 𝜕𝑠𝝎
ℎ
)
Γ𝑚

= 0,
(4.6)

for all (𝜑ℎ, 𝝎ℎ) ∈ 𝑉 ℎ × [𝑉 ℎ]2. The well-posedness of the above scheme can be shown similarly under certain mild conditions.

For the schemes (4.3) and (4.6), we consistently set 𝐗0 ∈ [𝑉 ℎ]2 as specified in Algorithm 2.1, that is, 𝐗0 is a parametrization 
of an (almost) equidistributed interpolation polygon with 𝑁 vertices for the initial curve Γ(0). Similar as the case of CSF, to start 
the BGN2 schemes, we need to prepare the initial data 𝜅0 and (𝐗1, 𝜅1), which can be achieved by using the similar approach as 
Algorithm 2.1 by using the corresponding BGN1 scheme. A complete second-order scheme can be obtained as in Algorithm 2.2 with 
the corresponding BGN1 scheme as a mesh regularization when necessary.

5. Numerical results

5.1. Convergence tests

In this subsection, we test the temporal convergence of the second-order schemes (2.5), (4.3) and (4.6) for solving the three 
geometric flows: CSF, AP-CSF and SDF, respectively, with two different mesh regularization techniques. As previously discussed in 
Section 3, we quantify the numerical errors of the curves using the shape metrics, such as the manifold distance and Hausdorff 
distance. For the following simulations, we select four distinct types of initial shapes:

• (Shape 1): a unit circle;

• (Shape 2): an ellipse with semi-major axis 2 and semi-minor axis 1;

• (Shape 3): a ‘tube’ shape, which is a curve comprising a 4 × 1 rectangle with two semicircles on its left and right sides;

• (Shape 4): a ‘flower’ shape, which is parameterized by
10

𝐗(𝜌) = ((2 + cos(12𝜋𝜌)) cos(2𝜋𝜌), (2 + cos(12𝜋𝜌)) sin(2𝜋𝜌)), 𝜌 ∈ 𝕀 = [0,1].
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Fig. 1. Log-log plot of the numerical errors at time 𝑇 = 0.25 measured by the manifold distance for BGN1, equi-BGN1, BGN2 and equi-BGN2 schemes for solving the 
CSF with two different initial curves: (a) Shape 1 and (b) Shape 2, respectively, where the number of nodes is fixed as 𝑁 = 10000.

Fig. 2. Log-log plot of the numerical errors at time 𝑇 = 0.25, measured by the manifold distance, for solving two different flows with Shape 2 as the initial curve: 
(a) AP-CSF and (b) SDF, respectively.

We note that for the CSF with Shape 1 as its initial shape has the following true solution, i.e.,

𝐗true(𝜌, 𝑡) =
√
1 − 2𝑡(cos(2𝜋𝜌), sin(2𝜋𝜌)), 𝜌 ∈ 𝕀, 𝑡 ∈ [0,0.5).

For this particular case, we compute the numerical error by comparing it with the true solution. However, for all other cases, we 
utilize the reference solutions which are obtained by the BGN2 scheme with large 𝑁 and a tiny time step size 𝜏 . In addition, the 
mesh regularization threshold for the BGN2 scheme is consistently set to 𝑛MR = 10, and the iteration tolerance of the equi-BGN2 
scheme is set as tol = 10−10.

We begin our test by calculating the convergence of the BGN2 scheme and the equi-BGN2 scheme for the CSF with either Shape 1 
or Shape 2 as initial data. Fig. 1 presents a log-log plot of the numerical errors at time 𝑇 = 0.25, measured by the manifold distance. 
The errors for the Hausdorff distance, which are similar, are not included here for brevity. To ensure a fair comparison, we also 
include the numerical results of the BGN1 scheme (2.3) and the equi-BGN1 scheme (2.7) under the same computational parameters, 
with a fixed number of grid points 𝑁 = 10000. As clearly shown in Fig. 1, the numerical error of the BGN2-type schemes reduces 
very rapidly with second-order accuracy in time, while the BGN1-type schemes only achieve first-order convergence.

Fig. 2 illustrates the temporal errors of the schemes for solving the AP-CSF and SDF with Shape 2 as initial data, showing quadratic 
convergence for BGN2-type schemes and linear convergence for BGN1-type schemes.

5.2. Comparison of computational costs

In order to show that the computational cost of the proposed BGN2 schemes is comparable to that of the BGN1 schemes, we 
present two examples about solving the CSF and SDF, respectively. The numerical codes were written by using MATLAB 2021b, and 
they were implemented in a MacBook Pro with 1.4 GHz quad-core Intel Core i5 and 8 GB RAM.

Table 4 displays a comparison of CPU times in seconds and numerical errors at time 𝑇 = 0.05, as measured by the manifold 
distance 𝑀 (𝑇 ) and Hausdorff distance 𝐻 (𝑇 ), using the BGN1-type and BGN2-type schemes for solving the CSF, where the initial 
shape is chosen as Shape 1. Table 5 provides similar results for solving the SDF with Shape 3 as its initial shape. Based on the findings 
presented in Tables 4 and 5, the following conclusions can be drawn. (i) On the same mesh, the computational cost of the BGN2 
scheme is slightly higher than that of the BGN1 scheme, as it involves additional calculations for the initial values and the right-hand 
side of the linear system at each time level. Meanwhile, the equi-BGN2 scheme incurs more or less similar computational cost as the 
11

equi-BGN1 scheme. However, the numerical solutions obtained using the BGN2-type schemes are significantly more accurate than 
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Table 4

Comparisons of the CPU times (seconds) and the numerical errors measured from the man-

ifold distance 𝑀 (𝑇 ) and Hausdorff distance 𝐻 (𝑇 ) for the BGN1-type and BGN2-type 
schemes applied to CSF, where the initial shape is chosen as Shape 1, with 𝜏 = 0.5∕𝑁 and 
𝑇 = 0.05.

BGN1 scheme BGN2 scheme

𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s) 𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s)

320 5.61E-4 1.25E-4 0.350 320 2.09E-4 5.04E-5 0.430

640 3.34E-4 6.37E-5 1.70 640 5.20E-5 1.27E-5 2.30

1280 1.81E-4 3.22E-5 9.85 1280 1.29E-5 3.20E-6 12.9

2560 9.38E-5 1.62E-5 110 2560 3.08E-6 8.16E-7 130

equi-BGN1 scheme equi-BGN2 scheme

𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s) 𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s)

320 4.70E-4 9.42E-5 1.16 320 2.09E-4 5.03E-5 0.82

640 1.82E-4 3.44E-5 4.93 640 5.20E-5 1.26E-5 4.19

1280 7.78E-5 1.40E-5 25.5 1280 1.29E-5 3.14E-6 25.4

2560 3.55E-5 6.22E-6 284 2560 3.08E-6 7.86E-7 304

Table 5

Comparisons of the CPU times (seconds) and the numerical errors measured by the man-

ifold distance 𝑀 (𝑇 ) and Hausdorff distance 𝐻 (𝑇 ) using the BGN1-type and BGN2-type 
schemes applied to SDF, where the initial shape is chosen as Shape 3, with 𝜏 = 0.5∕𝑁 , and 
𝑇 = 0.05.

BGN1 scheme BGN2 scheme

𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s) 𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s)

320 4.73E-3 6.91E-4 0.470 320 2.53E-3 1.14E-3 0.610

640 2.24E-3 3.38E-4 2.03 640 8.28E-4 4.17E-4 2.27

1280 1.10E-3 1.67E-4 12.6 1280 2.30E-4 1.12E-4 15.1

2560 5.53E-4 8.34E-5 133 2560 5.42E-5 2.82E-5 153

equi-BGN1 scheme equi-BGN2 scheme

𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s) 𝑁 𝑀 (𝑇 ) 𝐻 (𝑇 ) Time(s)

320 5.00E-3 1.04E-3 3.39 320 2.71E-3 1.21E-3 3.48

640 2.62E-3 5.61E-4 17.1 640 8.88E-4 4.33E-4 16.7

1280 1.34E-3 2.93E-4 105 1280 2.64E-4 1.56E-4 102

2560 6.83E-4 1.51E-4 1151 2560 8.12E-5 5.57E-5 1140

those of the BGN1-type schemes; (ii) The computational cost of the equi-BGN2 scheme is several times higher than that of the BGN2 
scheme, since it needs to solve a nonlinear system at each time step. However, equidistribution and unconditional energy stability 
can be theoretically guaranteed for the equi-BGN2 scheme.

5.3. Applications to the curve evolution

As is well-known, the AP-CSF and SDF possess some structure-preserving properties, such as the perimeter decreasing and area 
conserving properties [7,22,23]. In this subsection, we investigate the structure-preserving properties of the proposed BGN2 scheme 
and equi-BGN2 scheme applied to AP-CSF and SDF, respectively. As an example, we mainly focus on the SDF here. Moreover, we 
will discuss the importance of the mesh regularization procedures.

Fig. 3 (a) illustrates the evolution of an initially elliptic curve, referred to as Shape 2, driven by SDF towards its equilibrium state 
by the BGN2 scheme. Fig. 3(b)-(e) show the evolution of various geometric quantities during the process: the relative area loss Δ𝐴(𝑡), 
the normalized perimeter 𝐿(𝑡)∕𝐿(0), and the mesh distribution function Ψ(𝑡), which are defined respectively as

Δ𝐴(𝑡)|𝑡=𝑡𝑚 = 𝐴𝑚 −𝐴0

𝐴0 ,
𝐿(𝑡)
𝐿(0)

||||𝑡=𝑡𝑚 = 𝐿𝑚

𝐿0 , Ψ(𝑡)|𝑡=𝑡𝑚 =
max𝑗 |𝐡𝑚𝑗 |
min𝑗 |𝐡𝑚𝑗 | ,

for 𝑚 ≥ 0, where 𝐴𝑚 is the area enclosed by the polygon determined by 𝐗𝑚, 𝐿𝑚 represents the perimeter of the polygon, and Ψ(𝑡) is 
the mesh ratio function. As depicted in Fig. 3(b), the area loss exhibits a weakly oscillating behavior, which may result from the two-

step structure of the BGN2 scheme, the equi-BGN2 scheme has similar oscillating behavior and we omit it here for brevity. It is worth 
noting that despite the oscillations, the normalized area loss remains very low, consistently below 0.01%. By employing a smaller grid 
size, the area loss can be further reduced, and it is significantly lower than that of the BGN1 scheme under the same computational 
parameters. Furthermore, Fig. 3(c) shows the BGN2 scheme and the equi-BGN2 scheme preserve the perimeter-decreasing property 
of the SDF numerically. Furthermore, in Fig. 3(d), it can be observed that the mesh distribution function Ψ(𝑡) remains lower than 
12

1.2 during the evolution. This indicates that the mesh distribution remains well-maintained and almost equidistributed during the 
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Fig. 3. (a) Several snapshots of the curve evolution controlled by the SDF, starting with Shape 2 as its initial shape. (b) The relative area loss as a function of time. 
(c) The normalized perimeter as a function of time. (d) The mesh ratio function Ψ(𝑡) (in blue line) and the number of mesh regularizations (in red line) for the BGN2 
scheme. (e) The mesh ratio function Ψ(𝑡) (in blue line) and the number of iteration numbers (in red line) at each time step for the equi-BGN2 scheme. For (a)-(b), we 
used 𝑁 = 80 and 𝜏 = 1∕160 while for (c)-(e), 𝑁 = 640 and 𝜏 = 1∕1280. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 4. (a) Several snapshots of the curve evolution controlled by the SDF, starting with Shape 3 as its initial shape. (b) The relative area loss as a function of time. 
(c) The normalized perimeter as a function of time. (d) The mesh distribution function Ψ(𝑡) (in blue line) and the number of mesh regularizations (in red line) for 
the BGN2 scheme. (e) The mesh ratio function Ψ(𝑡) (in blue line) and the number of iteration numbers (in red line) at each time step for the equi-BGN2 scheme. For 
(a)-(b) we used 𝑁 = 80 and 𝜏 = 1∕160 while 𝑁 = 640 and 𝜏 = 1∕1280 for (c)-(e).

process. Therefore, in this scenario, there is no need to perform the mesh regularization procedure because Ψ(𝑡) is always smaller 
than the chosen threshold 𝑛MR (here we choose it as 10) in the simulations. Additionally, Fig. 3(e) shows the equi-BGN2 scheme 
achieves equidistribution property at each time step. The relatively low iteration numbers do not compromise the computational 
efficiency.

To provide a more comprehensive comparison, we conduct simulations of evolution of Shape 3 curve driven by the SDF. Fig. 4(b)-

(c) demonstrates that the BGN2 scheme and the equi-BGN2 scheme effectively preserve two crucial geometric properties of the SDF: 
the conservation of area and the reduction of perimeter properties [7,22]. It should be noted that Fig. 4(d) reveals that without 
13

the implementation of mesh regularization, the mesh distribution function Ψ(𝑡) can become very large. Therefore, in our algorithm, 
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Fig. 5. Evolution of the three geometrical quantities when the initial data is prepared as in Algorithm 2.1: (a) the relative area loss, (b) the normalized perimeter, 
(c) the mesh distribution function Ψ(𝑡), for the BGN2 scheme.

Fig. 6. Evolution of the three geometrical quantities when the initial data is prepared as in Remark 2.2: (a) the relative area loss, (b) the normalized perimeter, (c) the 
mesh distribution function Ψ(𝑡), for the BGN2 scheme (shown in the first row), the equi-BGN2 scheme (shown in the second row) and without mesh regularization 
procedure (shown in the third row).

when Ψ(𝑡) exceeds a threshold 𝑛MR, we employ the BGN1 scheme (4.5) for a single run to perform mesh regularization, similar to 
𝑺𝒕𝒆𝒑 𝟑 of Algorithm 2.2. As clearly shown in Fig. 4(d), following this step, the mesh ratio rapidly decreases to a low value, which 
makes the method more stable. Importantly, this mesh regularization procedure is only required four times throughout the entire 
evolution, without sacrificing the accuracy of the BGN2 scheme (cf. Table 5). Similarly, as shown in Fig. 4(e), the equi-BGN2 scheme 
also performs well for this initial shape. Compared to the case of Shape 2, although we require more iteration steps, it is still superior 
to the BGN1 scheme in view of the accuracy and efficiency (cf. Table 5).

Next, we proceed to simulate the evolution of a nonconvex curve, referred to as Shape 4. Fig. 5 and Fig. 6 (the first row) show the 
evolution of the geometric quantities based on two different initial data preparations: Algorithm 2.1 and Remark 2.2, respectively. 
A comparison of the results reveals the superiority of the latter approach for several reasons: (i) the magnitude of area loss is 
significantly lower when using the approach in Remark 2.2; (ii) the perimeter-decreasing property is preserved while the perimeter 
oscillates at the beginning when using Algorithm 2.1; (iii) the number of mesh regularization implementations is smaller with the 
approach in Remark 2.2. Thus we recommend preparing the data for a nonconvex initial curve following the approach outlined 
in Remark 2.2. Fig. 6 (the second row) demonstrates the performance of the equi-BGN2 scheme, from which it can be seen that 
only a relatively low number of iterations are needed for the majority of time steps (see 6(c2)). Additionally, Fig. 6 (the third row) 
illustrates the evolution of the same quantities without any implementations of mesh regularization. In this case, all three quantities 
exhibit significant oscillations after a certain time period, and the area loss and mesh ratio of the polygon becomes excessively large, 
resulting in the breakdown of the BGN2 scheme. Notably, mesh clustering has happened at 𝑡 = 1 (see Fig. 7(c3)), eventually leading 
to mesh distortion at 𝑡 = 2 (see Fig. 7(d3)).

These issues can be avoided by implementing one of the mesh regularization techniques. Fig. 7(a1)-(d1) and Fig. 7(a2)-(d2) 
demonstrate that mesh regularization is crucial for the effectiveness of BGN2-type schemes and the BGN1-type schemes can sig-

nificantly enhance mesh quality. Additionally, A comparison between Fig. 7(d1) and Fig. 7(d2) reveals that there still exists some 
mesh clustering for the BGN2 scheme in long-time evolution. In contrast, the equi-BGN2 scheme exhibits equidistribution property 
14

throughout all time.
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Fig. 7. Evolution of the curve driven by SDF starting with Shape 4 as initial data by using the BGN2 scheme (shown in the first row), the equi-BGN2 scheme (shown 
in the second row) and without mesh regularization procedure (shown in the third row). The simulations are conducted with a grid number of 𝑁 = 40 and a time 
step size 𝜏 = 1∕180.

Fig. 8. Snapshots of the curve evolution using the proposed BGN2 schemes for three distinct geometric flows: CSF (first row), AP-CSF (second row) and SDF (third 
row). The simulations are conducted with 𝑁 = 80 and 𝜏 = 1∕640.

Finally, we close this section by simulating the evolution of a nonconvex initial curve [3,27,29] driven by CSF, AP-CSF and SDF 
using the BGN2 schemes. The initial curve can be parametrized as

𝐗(𝜌) = (cos(2𝜋𝜌), sin(cos(2𝜋𝜌)) + sin(2𝜋𝜌)(0.7 + sin(2𝜋𝜌) sin2(6𝜋𝜌))),

for 𝜌 ∈ 𝕀 = [0, 1]. The numerical results are depicted in Fig. 8. As shown in this figure, the CSF initially transforms the intricate curve 
into a circle before it disappear. Both the AP-CSF and SDF drive the curve to evolve into a perfect circle as its equilibrium shape.

6. Conclusions

We proposed two novel temporal second-order, BGN-based parametric finite element methods (i.e., the BGN2 and the equi-

BGN2 schemes) for solving different geometric flows of curves (e.g., CSF, AP-CSF and SDF). Based on the BGN formulation and the 
corresponding semi-discrete FEM approximation, our numerical methods employ a Crank-Nicolson leap-frog method to discretize in 
15

time. The key idea lies in choosing a discrete inner product over the curve Γ𝑚, such that the time level 𝑡𝑚 coincides with the time 
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at which all quantities have approximations with an error of (𝜏2). We established the well-posedness of the BGN2 scheme under 
some suitable assumptions. Additionally, we showed that the equi-BGN2 scheme is unconditional energy-stable. We emphasized the 
use of shape metrics (manifold distance and Hausdorff distance) rather than function norms (e.g., 𝐿2-norm, 𝐿∞-norm) to measure 
numerical errors of BGN-based schemes. In the case of certain initial curves, such as a ‘flower’ shape, we found that the BGN2 
scheme (resp. the equi-BGN2 scheme), in conjunction with the BGN1 scheme (resp. the equi-BGN1 scheme) for mesh regularization, 
exhibited remarkable stability in practical simulations. Extensive numerical experiments demonstrated that the proposed BGN2 and 
equi-BGN2 schemes achieve second-order accuracy in time, as measured by the shape metrics, outperforming the BGN1 scheme in 
terms of accuracy.

Furthermore, it is worth mentioning that the approach we have presented for constructing a temporal high-order BGN-based 
scheme can be readily extended to address various other problems, such as anisotropic geometric flows [5], Willmore flow [11], 
two-phase flow [20], solid-state dewetting [31] and geometric flows in 3D [30].

In our future research, we will further investigate the development of structure-preserving temporal high-order BGN-based 
schemes [7,22] and conduct the numerical analysis of the BGN-based schemes with respect to the shape metric. These investiga-

tions will contribute to enhancing the overall understanding and applicability of the BGN type scheme in different contexts.
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